Generalized monotone schemes, discrete paths of extrema, and discrete entropy conditions
نویسندگان
چکیده
Solutions of conservation laws satisfy the monotonicity property: the number of local extrema is a non-increasing function of time, and local maximum/minimum values decrease/increase monotonically in time. This paper investigates this property from a numerical standpoint. We introduce a class of fully discrete in space and time, high order accurate, difference schemes, called generalized monotone schemes. Convergence toward the entropy solution is proven via a new technique of proof, assuming that the initial data has a finite number of extremum values only, and the flux-function is strictly convex. We define discrete paths of extrema by tracking local extremum values in the approximate solution. In the course of the analysis we establish the pointwise convergence of the trace of the solution along a path of extremum. As a corollary, we obtain a proof of convergence for a MUSCL-type scheme that is second order accurate away from sonic points and extrema.
منابع مشابه
Generalized Monotone Schemes , Discrete Paths of Extrema , and Discrete Entropy
Solutions of conservation laws satisfy the monotonicity property: the number of local extrema is a non-increasing function of time, and local maximum/minimum values decrease/increase monotonically in time. This paper investigates this property from a numerical standpoint. We introduce a class of fully discrete in space and time, high order accurate, diierenceschemes, called generalized monotone...
متن کاملar X iv : 0 71 1 . 04 06 v 1 [ m at h . N A ] 2 N ov 2 00 7 GENERALIZED MONOTONE SCHEMES , DISCRETE PATHS OF EXTREMA , AND DISCRETE ENTROPY CONDITIONS
Solutions to conservation laws satisfy the monotonicity property: the number of local extrema is a non-increasing function of time, and local maximum/minimum values decrease/increase monotonically in time. This paper investigates this property from a numerical standpoint. We introduce a class of fully discrete in space and time, high order accurate, difference schemes, called generalized monoto...
متن کاملOn discrete a-unimodal and a-monotone distributions
Unimodality is one of the building structures of distributions that like skewness, kurtosis and symmetry is visible in the shape of a function. Comparing two different distributions, can be a very difficult task. But if both the distributions are of the same types, for example both are unimodal, for comparison we may just compare the modes, dispersions and skewness. So, the concept of unimodali...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملEvaluation of monitoring network density using discrete entropy theory
The regional evaluation of monitoring stations for water resources can be of great importance due to its role in finding appropriate locations for stations, the maximum gathering of useful information and preventing the accumulation of unnecessary information and ultimately reducing the cost of data collection. Based on the theory of discrete entropy, this study analyzes the density of rain gag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 68 شماره
صفحات -
تاریخ انتشار 1999